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Using joint interactions to estimate paleostress ratios 
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Abstract--Because they grow perpendicular to a minimum principal stress (03), joints are paleostress markers. 
Younger joints may show a systematic change in orientation as they approach older, throughgoing, joints. This 
change in orientation reflects a change in the stress field in which the younger joint set is growing. Analytical 
solutions for the stress field around a single joint subject to a combination of opening (Mode I) and anti-plane 
shear (Mode IIl) Ioadings are given. The sense of rotation and change in magnitude of principal stresses near an 
existing joint are functions of the orientation and ratio of magnitudes of the far-field stresses and the coefficient 
of friction across the joint. 

Assuming that a later, non-parallel joint nucleates distant from, and grows toward, the throughgoing joint, the 
stress field in which it is growing will be systematically rotated and changed by the presence of the throughgoing 
joint. The effect of interaction between the older and younger joints is ignored in the analysis. The systematic 
change in orientation of the later joint reflects the change in principal stresses near the throughgoing joint, and 
can be used to place approximate limits on the ratio of the far-field horizontal stresses. 

Zoned joints are individual, subparallel en 6chelon joints which are confined to a narrow zone, separated from 
adjacent zones by a characteristic distance, and confined to a single lithologic interval. A joint zone can be 
modeled as a single, infinitely long joint with a characteristic height. 

Comparison of analytic stress field solutions with field examples of interacting zoned joints in Arches National 
Park, Utah, suggest that a curving-parallel geometry of younger joints is indicative of a stress field in which - 3  < 
tr~ la*~ < -1/3.  A curving-perpendicular geometry of younger zones is compatible with principal stress ratios of 
-1 /3  < a~ /a'~ < 1. 
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the i th set of zoned joints in domain k 
crack half-length (or half-height) 
axes of Cartesian co-ordinate system 
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angle between e~ and Z-axis (Fig. 7) 
angle between a2 and Z-axis 
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point and tips (see Fig, 14) 
uniform fluid pressure within the crack 
uniform fluid pressure throughout the 

body 
far-field principal stresses 
resolved far-field stresses on plane of 

crack 
local principal stresses 
stresses resolved to Cartesian co- 

ordinate system 
far-field uniform stress in Z-direction 
induced stress in Z-direction to satisfy 

plane strain 
stress intensity in ith mode of 

deformation 
fracture toughness in i th mode of 

deformation 
coefficient of sliding friction 
shear stress ratio 
Poisson's ratio 

INTRODUCTION 

ENOELDER & Geiser (1980) concluded from field studies 
on the Appalachian Plateau that regional systematic 
joints reflect the principal directions of the regional 
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stress field which gave rise to the joints. Each set of joints 
is interpreted to represent a distinct episode of jointing 
and an associated stress field. They concluded (Engelder 
& Geiser 1980, p. 6333) that joints are extensional 
fractures formed perpendicular to tr 3 and inferred that 
net tensile stresses were present during jointing. Super- 
position of multiple sets reflects a change in the orien- 
tation of regional stresses over time. 

There is a consistent interactive geometry between 
different sets of systematic joints in some areas. This 
geometry allows the relative ages of the systematic sets 
to be determined. Younger joints terminate against the 
free surface represented by the wall of an older joint, 
unless the walls of the older joints were effectively 
cemented together (Wheeler & Holland 1981, p. 397). 
Additionally, younger joints may abruptly curve near an 
older joint, resulting in a 'hcok' geometry (Kulander et 
al. 1979). Younger joints may also curve into parallelism 
with the older joint (Dyer 1983). These geometries are 
herein termed curving-perpendicular and curving-paral- 
lel geometries. 

Elastic solutions for the stress field about a crack in an 
otherwise homogeneous body predict a perturbation of 
the stress field in the vicinity of the crack. The region of 
perturbed stresses is dependent on a characteristic 
length, the crack length or height. A change in orien- 
tation of the principal stresses in this perturbed zone 
should be reflected by a change in orientation of any 
younger crack which grows into the perturbed zone 
around the older crack. 

Expanding on the terminology of Hodgson (1961), 
zoned joints are a type of systematic joint in which all 
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joints of a given geometric set are confined to a narrow 
zone, generally perpendicular to bedding. Zones of a 
given set display a characteristic interzone spacing over 
a large region. Joints within a given zone display no 
consistent en 6chelon pattern in either map or cross-sec- 
tion view. The relatively simple geometry of zoned 
joints justifies a comparison between observed interac- 
tion geometries between sets of zoned joints and ana- 
lytical solutions to the stress field about a single, 
idealized joint. 

This paper presents observations on zoned joints from 
Arches National Park, Utah,  U.S.A. ,  and compares 
observed interactions to those predicted by analytical 
solutions to the stress field about a single, idealized joint 
zone. 

EXAMPLES OF JOINT INTERACTIONS 

Exceptional exposures of systematic joints are found 
on the flanks of the Salt Valley Anticline in Arches 
National Park, Southeastern Utah,  U.S.A. The Salt 
Valley Anticline is the northwestern exposure of a series 
of en 6chelon salt-cored anticlines which make up the 
Paradox Basin region of the Colorado Plateau Province. 
Numerous investigators have studied the geology of this 
area (Dane 1935, Williams 1964, Cater 1970, Baars & 
Stevenson 1981, Dyer  1983, Doelling 1985). A gener- 
alized geologic map is shown in Fig. 1. 

Systematic joints are well developed in several strati- 
graphic units on the anticline, but one unit displays 
exceptional exposures over an outcrop area of about 50 
km 2. This unit is the Moab Member  of the Entrada 
Sandstone. It is a sheet-like body of Jurassic eolian 
quartzose sandstone with a uniform thickness of 27 m 
and displaying large-scale cross-bedding. The Moab con- 
formably overlies a thick (69-96 m) section of alternating 
planar- and cross-bedded siltstones and sandstones of 
the Slick Rock member  of the Entrada Sandstone. The 
Summerville Formation conformably (?) overlies the 
Moab (but also see O'Sullivan 1981, and Doelling 1985 
for other interpretations), The Summerville is about 12 
m thick, and is composed of alternating thin beds of 
claystone, sandstone and limestone. 

Several sets of systematic joints are developed in the 
Moab, with a mean strike almost parallel to the axis of 
the Salt Valley Anticline. Systematic jointing in the 
Moab Member  provides classic examples of zoned 
joints. Due to the nature of joint zones, relative ages of 
joint sets can be readily determined. Detailed obser- 
vation of the offset of sand dune cross-bedding in the 
Moab Member  allows lateral shear displacement to be 
determined, and rules out a shearing origin for the j oints. 

The age of the successive jointing episodes and the 
relevant boundary conditions (namely the depth of 
burial and the influence of fluid pressure) present during 
each episode are poorly constrained. None of the sets of 
systematic joints shows any change in orientation near 
present erosional features such as canyon walls. This 
suggests that all systematic joint sets formed under an 
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Fig. 1. Generalized geologic map of Arches National Park and vicinity 
(after Doelling 1985). Rectangles A and B correspond to joint 
Domains A and B (Figs. 2a and 3a). Map units are: Q = Quaternary 
alluvium and coltuvium; K = Cretaceous marine shale and minor 
sandstone; Ju = Upper Jurassic continental sandstones and shale; Jem 
= Jurassic Moab Member of Entrada Sandstone (eolian sandstone); Jl 
= Lower Jurassic eolian and fluvial sandstone; T = Triassic continental 
and marginal marine sandstone; P = Pennsylvanian and Permian 

evaporites, limestone and sandstone. 

unknown thickness of overburden prior to the most 
recent erosional event. Conversely, analysis of the 
relationship between curvature of the Moab sheet and 
the orientation of systematic joints indicates that the 
youngest systematic joints are almost perpendicular to 
the local maximum convex-upward curvature of the 
Moab sheet (Dyer  1979). Superimposed systematic joint 
sets in the Moab are compatible with a response to 
repeated flexing of the brittle Moab sheet due to the 
movement of underlying salt. In this model, the youngest 
joints formed in response to local tensile stresses due to 
passive bending of the Moab sheet over mobile salt. The 
latest phase of collapse of the Salt Valley Anticline is 
known to have started not more than 600,000 years ago 
(Dyer et al. 1983). It is doubtful that more than 1 km of 
overlying rock has been removed by erosion in the 
intervening 600,000 years. 



J o i n t  i n t e r a c t i o n s  a n d  p a l e o s t r e s s  r a t i o s  

Fig. 2. (a) Aerial view of part of Domain A. Enlargement is portion of frame GS-W126-101, U.S. Geological Survey aerial 
mapping photography. Jes = Slick Rock Member; Jem = Moab Member; Js -- Summerville Formation. Characteristics of 
jA and J~ A explained in text. Note that J 2 nowhere crosses jA. Sigmoidal shape of jA is apparent near annotations, and is best 
seen when page is tilted and viewed along jg.  (b) View looking down jg zone. Juniper tree growing in jA is about 2 m tall. 
jg trends from upper left to lower right. Note how near-planar joints A in J 2 (at arrow) systematically change orientation as 

J2 A approaches jA. 
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Fig. 3. (a) Aerial view of Domain  B. Enlargement  is a portion of frame GS-WI 8-144, U.S Geological Survey aerial mapping 
B B photography.  Jes = Slick Rock Member ;  Jem = Moab Member ;  J ~ and J2 explained in text. Circle indicates location of (b). 

Note jointing in underlying Slick Rock. (b) View down a j_u zone. J~ trends from lower lefl to center right. Brunton compass  
in center  right for scale. Note that I u intersects J~ at nearly a right angle, and i,, terminated by lI~ 

• 2 . - , 
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Observations 

Figures 2 and 3 show superimposed sets of zoned 
systematic joints which are developed in the Moab. 
Based on widespread geometric characteristics, two dis- 
tinct domains of zoned joints are differentiated. 

In Domain A, the oldest joint zones are throughgoing 
features (jA of Fig. 2a) which display 2-6 cm of right- 
lateral shear displacement. Younger joint zones are 
collectively referred to as jA. The dihedral angle 
between the mean attitudes of jA and jA ranges from 6 to 
23 ° with a distinct maximum at 10 °. Lateral displacement 
on jA zones ranges from zero to 2 cm, with only right- 
lateral displacement noted. J2 A zones with more easterly 
strikes display the least shear displacement and are 
interpreted to be the youngest joint zones in Domain A. 
jA zones do not cut, nor do they intersect, joints of the 
first set. jA zones are entirely bound between two adja- 
cent zones of jA. jA zones do not appear to nucleate 
along jA zones, but rather in the central region between 
J1A zones. Traces of jA zones are linear in the central 
region between flanking jA zones, but begin to curve 
into parallelism with jA zones at a distance typically of 
about 5 m. The closer jA comes to jA, the more pro- 
nounced the curvature, with J2 A finally paralleling J1A 
some tens of centimeters away (Fig. 2b). This curving- 
parallel geometry of jA produces the sigmoidal form 
apparent in Fig. 2. 

The oldest joint zones of Domain B are also through- 
going, planar features (J~ of Fig. 3a). Jal zones uniformly 
display left-lateral displacement of 1-6 cm. Later gener- 
ations of joint zones in this region are collectively desig- 
nated J2 B. The strike of J~ varies considerably, from 
N10°E to N39°W, giving J~/J~ dihedral angles of 2-51 °. 
As was the case in Domain A, J~ joint zones do not cut 
across J~ zones, but are bound by J~. J~ zones show a 
consistent curving-perpendicular geometry. The J~ 
zones consistently curve abruptly toward the through- 
going J~ zones, with J~ intersecting and terminating in a 
J1 a zone at almost a right angle (Fig. 3b). The change in 
strike of J~ occurs very abruptly, typically about 1-2 m 
from the J~ zone. Lateral offset on Ja2 varies from less 
than I mm to about 1.2 cm, with all observed offset being 
left-lateral. J~ joints with more westerly strikes show the 
least offset and are interpreted to be the youngest sys- 
tematic joints in Domain B. 

Discussion 

The age relationships in Domains A and B are unam- 
biguous. Within each domain, all Jt zones clearly predate 
all J2 zones. These two sets of zoned joints are not 
synchronous, conjugate joints. The youngest sets of 
systematic joints, J2, generally show no shear displace- 
ment,  only a dilational opening. Zoned joints of J2 were 
formed as extensional fractures. Collectively, they 
appear to have formed during an episode of jointing in 
which the causative stress field had rotated relative to 
that which caused J1 (Fig. 4). 

Although the throughgoing zones of J1 may display 

Fig. 4. (a) Throughgoing zoned joint set forms perpendicular to 
regional least principal stress (arrows). (b) Over time, rotation of 
stress field leads to resolved shear stresses on the throughgoing set of 
zoned joints, which in turn causes shear displacement on the oldest set. 
Younger zoned joints growing in this rotated stress field nucleate in the 
region between the throughgoing zones, perpendicular to the new 

direction of o3 (heavy arrows). Compare with Figs. 2(a) and 3(a). 

small horizontal shear displacements, they are also infer- 
red to have originated as extensional fractures. Support 
for this interpretation is mostly circumstantial: the pre- 
sence of only one set of sub-parallel joints and the lack of 
a regular en 6chelon geometry argue against a shearing 
origin in which conjugate sets might be expected to 
form; while the uniform sense of shear displacement 
observed on J1 is compatible with later shear displace- 
ment due to a rotational stress field in which the exten- 
sional joints of J2 were growing. 

The uniform manner in which younger joint zones 
change their attitude throughout a domain (curving- 
parallel in Domain A and curving-perpendicular in 
Domain B) suggests that the presence of the older joint 
set has a locally strong influence on the growth of the 
later set. In map view, the later (J2) zones display a 
sigmoidal shape, similar to that seen in asymmetric 
tension gashes (Roering 1968, Ramsay & Graham 1970, 
Durney & Ramsay 1973). A standard explanation of 
such tension gashes is that they represent the localized, 
progressive rotation by simple shear of an originally 
planar crack which continued to grow during the shear- 
ing deformation, while the causative stress field remains 
fixed in orientation (Ramsay 1967, pp. 88-91). The 
resolved shear gives rise to a progressive rotation of the 
inner core of the tension gash, while later increments of 
crack growth are oriented perpendicular to the far-field 
least principal stress direction. Such a mechanism 
requires material rotation in a fixed stress field. This 
mechanism has been used to account for the 'anomalous' 
curvature commonly noted in en 6chelon fractures 
wherein the "ends of the gashes curve toward the direc- 
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tion from which movement occurred" (Shainin 1950, p. 
516). 

Simple shear and progressive material rotation can be 
ruled out as the cause of the sigmoidal form of the 
younger joint zones in Arches. Such progressive rotation 
would require meters to tens of meters of lateral offset 
along the Jj zones, while field observations rule out more 
than 10 cm of lateral offset and any significant pen- 
etrative strain. Estimates of shear displacement arrived 
at by examining the deflected angle of the sigmoidal 
form have no relation to the true lateral offset observed 
on the throughgoing joint set J1. 

An alternate hypothesis is that the throughgoing joint 
zone, J1, locally perturbed the stress field in which a 
younger joint se t  (32) was growing. This perturbation 
caused rotations of the orientation of the principal 
stresses and also resulted in a change of the magnitudes 
of the principal stresses. The perturbing effect was ap- 
parently strongest closest to the throughgoing joint 
zone. Thus, the sigmoidal form would not have arisen 
from a material rotation in a fixed stress field, but from a 
local rotation of the stress field due to an inhomogeneity 
in the rock layer. A pre-existing joint zone could cer- 
tainly have provided such an inhomogeneity. 

In Arches, the curving-perpendicular geometry of 
younger joint zones in Domain B is associated with 
left-lateral displacement across the older throughgoing 
zones. Conversely, the curving-parallel geometry of 
younger joint zones in Domain A is associated with 
right-lateral displacement across the throughgoing zones 
(Fig. 5). It is tempting to associate curving-parallel 
geometries with right-lateral displacements and the 
curving-perpendicular geometries with left-lateral dis- 
placements along the throughgoing zones. This associ- 
ation, however, is not true in general. It is possible for a 
younger joint zone to develop either (and perhaps both) 
of the sigmoidal geometries in a given region, regardless 
of the resolved sense of shear and displacement across 
the older, throughgoing zone. 

0 

I 

b 
Fig. 5. Cartoon map of (a) Domain A and (b) Domain B, showing: the 
observed sigmoidal geometry of younger joints; the observed sense of 
shear displacement on older, throughgoing joint zones, and the infer- 
red orientation of the principal stresses in the mid-region between the 

throughgoing zones during the latest phase of jointing. 

~FREE SURFACE J 

Fig. 6. Cartoon map view of the two ways in which the state of stress 
may rotate to accommodate a free surface at a throughgoing joint 
zone. Orientation and magnitude of principal stresses in mid-region 
between throughgoing zones approximates the remote stresses. One 
principal stress is assumed to be vertical. Younger joint zone grows 
outward from the mid-region between older, throughgoing joints, with 
each growth increment perpendicular to the local minimum principal 
stress (or3). Sigmoidal geometry develops due to rotation of principal 
stresses near the free surface. Sense of rotation is mainly a function of 
the ratio of the remote stresses, and hence will remain uniform over a 
relatively large area during a given jointing episode. This leads to the 
occurrence of a single sigmoidal geometry over this area, or domain. 

In general, the throughgoing zones may be considered 
as free surfaces, which requires that at the throughgoing 
zones, one of the principal stresses be perpendicular to 
the joint face and have zero magnitude. Examination of 
the state of stress in the region between two through- 
going zones indicates that this requires a rotation in 
space of the principal stresses, and a change in mag- 
nitude of at least one of the principal stresses (Fig. 6). 
The rotation of the principal stresses may either be 
clockwise (Fig. 6, top) or counterclockwise (Fig. 6, 
bottom). 

JOINTS AS PALEOSTRESS INDICATORS 

Joints record an episode of brittle fracture in rock. 
Field evidence indicates that all of the zoned systematic 
joints in Arches originated as extensional fractures. As 
noted by Griggs & Handin (1960, p. 348), extension 
fractures form perpendicular to the direction of o3. 
Tensile fractures are a subset of extension fractures 
which form due to a tensile ~3 (more correctly, when ~3 
- P < 0, where P is a uniform fluid pressure within the 
crack). There is a considerable body of theoretical and 
experimental evidence to support this geometric relation 
between the orientation of the extension fracture and 
the orientation of o3 (Hubbert & Willis 1957, Od6 1957, 
Griggs & Handin 1960, pp. 350-351, Kehle 1964, Hoek 
& Bieniawski 1965, Secor 1965, 1969, Peng & Ortiz 
1973, Zoback & Pollard 1978). The zoned joints of 
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Arches, then, provide a paleostress map of the elastic 
stress field at the time of jointing. The consistent change 
in orientation of younger joint zones near older, 
throughgoing zones is interpreted as a local change in 
the stress field due to the presence of the throughgoing 
zone. 

Solutions for the elastic stress field about an idealized 
single zone of joints are presented in the following 
pages. Assumptions about loading conditions allow a 
considerable simplification of the solutions. Maps are 
presented of the stress field about a single joint zone for 
a variety of loading conditions. These stress maps are 
interpreted in terms of the geometry that a younger joint 
set might develop if growing in this stress field. The 
interpretations involve rather restrictive assumptions. 
These assumptions are: (1) a tensile minimum principal 
stress (03) is required for joint growth; (2) orientation of 
the tip of the growing joint is perpendicular to the local 
03; and, (3) there is no interaction between the through- 
going joint and the growing joint. Comparisons are 
made with the systematic change in orientation observed 
in the younger zoned joints in Domains A and B. No 
explicit provision is made in this analysis for an internal 
fluid pressure, P, within the joint. If such a fluid pressure 
were present, assumption (1) can be more rigorously 
stated as: joint growth requires that (03 - P)  < 0. If the 
fluid pressure is uniform and unchanging in space and 
time the analysis presented below can be recast in terms 
of effective principal stresses without changing the 
analysis or results. The generalized solutions of the 
Appendix allow for the addition of a uniform 'excess' 
internal fluid pressure (an overpressure) within the joint. 
Unfortunately, there is no evidence from which to deter- 
mine or estimate the magnitude or spatial variation of P 
during the jointing episodes in Arches, so this potentially 
important factor is ignored in the following analyses. 

An elastic analysis indicates that the presence of a 
crack in an otherwise homogeneous, infinite isotropic 
body will locally perturb the stress field in the vicinity of 
the crack, leading to a local rotation and change in 
magnitude of the principal stresses. Although the 
criteria for the direction of growth of a later crack in such 
an inhomogeneous stress field is not certain, most 
theories (summarized in Bergkvist & Guex 1979) point 
toward the same end result: the younger crack will grow 
in a direction to align itself with the direction of the local 
principal stresses, that is the direction of crack growth 
will be such that it minimizes the resolved shear on the 
propagating crack tip. Using this criterion, we might 
expect a second crack growing in the perturbed stress 
field due to the presence of the throughgoing crack to 
follow the trace of the rotating principal stresses in the 
perturbed zone. Such a criterion ignores the interaction 
between cracks (Segall & Pollard 1980) and the attrac- 
tion effect which a free surface has on the growing crack 
(Pollard & Holzhausen 1979). The complete problem, 
accounting for interactions between the two cracks, is 
not readily solvable by analytic means. 

o 

Fig. 7. Idealization of a joint zone as a single, infinitely long crack of 
height 2c. The crack is subjected to far-field stresses in the horizontal  

plane (o~ and o~).  o7 is vertical and colinear with the X-axis. 

STRESS FIELD ABOUT OLDER JOINT ZONE 

Within a given domain, non-parallel generations of 
zoned joints display one of two characteristic interac- 
tions: (A) the younger joint zone curves into parallelism 
with the older joint zone; and (B) the younger joint zone 
intersects the older zone at nearly a right angle. Some 
insight into the physical basis for this behavior may be 
gained from an elastic analysis of local stress pertur- 
bations about the older, throughgoing zone. 

The older joint zone may be considered mechanically 
equivalent to a single, infinitely long crack which has a 
characteristic height of 2c (Fig. 7), and which is embed- 
ded in an infinite, isotropic, homogeneous elastic body. 
The crack is subjected to mixed Mode I (opening mode) 
and Mode III (antiplane shear) loading. 

The loading arises from far-field principal stresses o7, 
o~ and o~. We use the sign convention that positive 
stresses are compressive and negative stresses are ten- 
sile. The field evidence requires that (o~ - P)  < 0 and 
that a~ lie in the horizontal ( Y - Z )  plane. Because no 
estimates of the value of P are available, we assume that 
P = 0, which requires that o~ be tensile. We assume that 
o 7 is vertical (colinear with the X-axis) and compressive. 
o~ lies in the Y - Z  (horizontal) plane and may be either 
tensile or compressive. We will examine the changes in 
the stress field about the crack under various ratios of 
o lo . 

Resolved stresses on the crack 

The far-field principal stresses, resolved into normal 
and shear components with respect to the crack face 
give: 

OYY-~ 2 0 " 3 -  .O ~-- ~" COS [2(90 -- 

(1) 

Ozz = 0" 3 + .O ~ [2(90 2 ~ - c o s  - 

(2) 
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- 03. sin [2(90 - ~)] (3) 

" ~ (4) Oxx ~-- O l ,  

where ¢ is the angle between o~ and the Z-axis (Fig. 7). 

Solving for the stress field 

The general loading is shown in Fig. 8. Because of the 
presence of the crack (zoned joint), local variations in 
the stress field may occur. These variations will result in 
changes in the magnitude and orientation of the principal 
stresses. Solution of the problem must be independent 
of z, so the problem reduces to a superposition of 
two-dimensional problems in the X - Y  plane and a uni- 
form stress on the Z-axis (Fig. 8b or c, d & e). Details of 
the solution for the perturbed stresses a~,  Oyy, a~y and 
Oy~ are given in the Appendix. The stress along the 
Z-axis, o~, is the sum of a far-field uniform stress, ~7~, 
and an induced stress required to satisfy the plane strain 
geometry of our two-dimensional solutions, a~  (Fig. 8b 
or  c, & e). 

,,=, = ~ L  + oL, (5) 

where aI~ = v(a~, + oyy) and v is Poisson's ratio. A 
typical value of v for sandstones is about 0.1 (Birch 1966, 
p. 167). We will assume throughout that v = 0.1. 

Far from the crack we require that 

Gzz = O z z  "+" zz 

zz  -~ V ( O  . . . . .  + ( T y y )  

so ~7. = a ~  - v ( o ~  + O~y). (6) 

If we limit our investigation to the plane x = 0, then 
the only rotation of principal stresses will be about the 
X-axis. Once the stresses Oyy, a~; and ay~ are found at a 
point, the orientation and magnitude of the principal 
stresses, o z and a3, at that point can be found from a 
simple Mohr circle construction. 

We limit our investigation to the plane x = 0 because 
of the great simplification in the analysis which results. 
Off  the x = 0 plane, tTxy and a~ shear stresses will exist 
which will tend to rotate the principal stresses about the 
Z- and Y-axes, respectively. These shearing stresses will 
increase near the crack tip (y = 0, x = +c).  

T¢ 2 
o 

O,,R 

o-=, l =  ' 
o-. b 

J 

4" 

{ -S ¸ 

..I" 

J ~  y 

/ "  F 
i 

c,-sj . .~ 7 y 

d ~"~ e 

Fig. 8. (a) Resolution of principal stresses aT, o7 and o~ into normal and shear components leads to this generalized loading 
on a crack which is infinitely long in the Z-direction and has a characteristic height (=  2c) in the X-direction. One of the 
principal stresses (crT) is colinear with the X-axis. If Oyy is compressive, then the crack is closed and a Cry z shearing stress of 
magnitude Soy~ may exist on the crack surface. Solution of the perturbed stress field about the crack can be obtained by 
linear superposition of solutions to plane crack problems (b) and (d) and uniform stress states (c) and (e). Any arbitrary 
loading can be expressed as a combination of case (b) or (c), plus (d) and (e). (b) Opening mode (Mode I) crack under biaxial 
loading. This solution is only applicable if oy r is tensile, which requires the crack to be open. The normal and shear stresses 
on the crack surface, cryy(y = 0, Ix] < c) and Oyz(y = 0, Ix] < c) are zero. (c) l foyy is compressive, then the crack is closed 
and oyy is continuous across the crack plane. There is no Mode I perturbation of the stress field, and uniform normal ( o ~ ,  
cry,.) and shear stresses (SOT,.) exist throughout the body. The plane strain geometry leads to an induced o= stress of 
magnitude ozz = v[o~x + ayy]. For any given loading, either case (b) or (c) will be applicable with each mutually exclusive 
of the other. (d) Another  solution component  is that due to pure Mode III (antiplane shear) loading. This solution satisfies 
the case of a far-field shear stress of magnitude (1 - S) cry: applied to a crack whose surfaces are stress-free. If cryy is tensile, 
then S = 0. (e) A uniform stress in the Z direction, 07, may be superimposed on the body without altering any of the other 

solutions. 
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BOUNDARY CONDITIONS 

There are two general situations we wish to investi- 
gate: (1) when the throughgoing zone is an open crack, 
and (2) when the crack is closed and there may be 
frictional sliding on the crack. 

oo Open crack  (O yy < O) 

If the resolved far-field stress perpendicular to the 
crack face (Oyy) is tensile, then the crack is open, and the 
crack face is traction-free. The boundary conditions 
which must be satisfied are 

at y = 0; Ix] < c; Oyy = Oy z = O, (7) 

Oyy = Oyy 

at (x 2 + y2)1/2 ~ oo; Oxx = Oxx.  (8) 

Oy z ~ 0 ® yz 

This situation corresponds to a superposition of the 
problems illustrated in Fig. 8(b), (d) & (e). The solution 
is given by superposition of the plane crack Mode I and 
Mode III solutions (equations A9, A10 and A19 in the 
Appendix). On the plane x = 0, the non-zero stresses are 

Oyy(X -~" O) = Oyy (y2 + 

O ® [[YI(Y2 + 2C2) ] (10) Oxx(X = O) = YY[ (y2 + &)3n - 1 + O7x 

Oy~(X = O) = Oyz y2 c2)1/2 (11) 

Ozz(X = O) ~--- "Ozz "t- l/(Oxx "1- Oyy). (12) 

Substituting in equations (6), (9) and (10), equation (12) 
becomes: 

_ _ [  = {21y3++¢2)3/2) yc2[~ a] ozz(x = 0) = Oz~ + V/Oyy/(y2 - 2 . (13) 

From equations (9)-(13) the orientation and mag- 
nitude of the principal stresses 02 and 03 can be deter- 
mined on the plane x = 0. ol will be colinear with the 
X-axis and have the magnitude of e~x as given by 
equation (10). It is worth emphasizing that on the plane 
x = O, the magnitude and orientation of 02 and 03 are 
independent of a T. 

0o 
Closed  c rack  (O yy > O) 

If the resolved far-field stress perpendicular to the 
eo crack face, Oyy, is compressive, then the crack is closed 

and there can be no Mode I perturbation of the stress 
field. It is still possible for the crack to be shear-stress 
free. Such a situation might arise if the crack were 
perfectly lubricated. In general, the shear stress on the 
crack face will have some intermediate value between 
zero and o~z. This situation corresponds to a super- 
position of the problems shown in Fig. 8(c), (d) & (e). 

The boundary conditions for this problem are: 

oo Oyy = Oyy (14) 

O x x  ~ oo 
Oxx 

o0 for y = 0, Ixl < c; o .  -- 5 o .  (0 --< S ~ 1) (15) 

for (x 2 + y2)1/2 ~ co; Cryz = O'~yz" (16) 

S is the shear stress ratio given by 

S - °r~ (y = 0) 
Oyz 

S = 0 corresponds to a perfectly lubricated crack, 
while S = 1 corresponds to a locked crack. If a Byerlee- 
type sliding friction relation is used, then on the crack 
face (y = 0, Ixl < c): 

0 = = (17) Oy z = C Oyy = S o y  z 

and S C O °~ = YY 
0o , 

Oyz 

where C O is the coefficient of sliding friction. 
Solution of the boundary value problem is obtained by 

the superposition of two solutions corresponding to Fig. 
8(c) & (d) 

d (18) Oy z = O~z + Oy z, 

where 
oo 

O~z = SOyz(O ~ S ~ 1) (19) 

is the uniform shear stress in an uncracked infinite body 
(Fig. 8c), and 

= [  Yc2)1/2 ] (20) adz= (1 - -  S)ayz ( y 2 +  

is the shear stress at the point (x = 0, y, z) due to the 
existence of a frictionless, infinitely long crack of height 
2c subjected to a far-field anti-plane shear (Mode III 
loading) of magnitude ( 1  - S)ay~. The full Mode III 
solution is given in the Appendix, equation (A17). This 
problem is illustrated in Fig. 8(d). 

Equation (18) becomes 

y / Oyz(X = O) = ay  z S 1 (y2 c2)1/2 nt- (y2 +Yc2) 112] 

(21) 

It may easily be verified that equation (21) satisfies the 
boundary conditions of (15) and (16). To complete the 
solution, we note that: 

O ' x x  ~ o0 Oxx = 0 1 
ao 

Oyy = Oyy 

Ozz = Ozz "1- 1) Oxx "t- Oyy = Ozz 

Oxy = 0. (22) 

We may now solve for the principal stresses 02 and o3 
on the plane x = 0 and determine their orientation by 
using the results of (21) and (22) in a standard Mohr 
circle construction. On x = 0, 01 will be vertical, with 
01 --~ 0~. 

= o z[S + 
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As with the open crack, it is worth noting that the 
orientation and magnitude of 02 and cr 3 are independent 
of or7 on the plane x = 0. 

EXAMPLES 

Figures 9, 10, 12 and 13 are maps of the elastic stress 
field about a single joint under a variety of combinations 
of far-field stresses and degree of healing of the joint. All 
examples assume no excess internal fluid pressure in the 
joint (Pi = 0). All maps are of the plane x = 0, the 
near-horizontal plane perpendicular to and bisecting the 
joint. In all the examples, the far-field principal stresses, 
a~ and o~, lie in the Y - Z  plane, and o~ makes an angle 
of 30 ° with the joint face (the Z-axis). The positive 
X-axis (approximately vertical) is normal to the page. 
The trace of the joint falls on the Z-axis. On the plane x 
= 0, the solution is independent of the z co-ordinate. For 
generality, the Y-axis has been non-dimensionalized. 
For comparative purposes, the joint half-height [c] in 
the Moab Member is 13.5 m. Stresses are in arbitrary 
units. 

If we accept the hypothesis that the local crack propa- 
gation direction is perpendicular to the local minimum 
principal stress, then it is tempting to use the perturbed 
elastic stress field to make a predictive plot of the trace 
of a joint which grows in the perturbed stress field. We 
will attempt this, after first noting the following impor- 
tant qualifications. 

When a second crack is introduced into the body, the 
problem becomes much more complicated. As discussed 
earlier, the role of crack interaction between two three- 
dimensional cracks, one of which is non-planar and 
whose detailed geometry is not well known, is a poorly 
understood problem. On the stress maps, successive 
points have been purposely offset to remind us that these 
solutions are strictly valid only for the case of a single, 
throughgoing joint. If we could somehow introduce a 
second crack in the body, yet require that this later crack 
not alter the stress field which arises solely from the 
throughgoing crack, then an examination of the stress 
field could provide valuable information about the 
geometry of the later crack. The degree to which this 
assumption violates reality is unknown, yet adoption of 
the assumption may allow the use of this simple analysis 
as a first order approximation to the much more complex 
multiple-crack problem. 

I. Closed crack 

For v~ = - 1 (unit tension), crT vertical, and an angle 
between cr~ and the Z-axis of 30 °, the crack will be closed 
if o~y > 0. For the geometry specified, the condition that 
Oyy ~> 0 requires that o~ > 3. In examples I .A and I.B, 
cr~ has been assigned an arbitrary value of 5. Variations 
in the shear stress ratio on the crack, (S), lead to 
variations in the stress field about the crack. Solution for 
the stresses follows from equations (5) and (14)-(21). 

2.0 

"~. t . . . .~  ~, ~E.s,LE 
1.0 

& 

Fig. 9. Map of principal stresses about a jo int  subject to friction across 
the joint. Ear-field stresses are o~/a~ = - 5 ,  ~ = 30 °. Resolved far-field 
stresses are shown in the upper right. Boundary conditions on the 
crack are shown in the lower left. A Byerlee-type friction law is used to 
specify shear stress (at,:) on the joint. Note that o3 changes sign at y/c 

0.6. See text for details. 

I .A .  Frictionalsliding. If the resolved normal stress on 
the joint, Oyy, is compressive, then the joint is closed. If 
the joint is not completely locked, it is possible that some 
frictional sliding relationship will control the shear 
stresses on the joint face. Byerlee (1977) found that rock 
type has little or no effect on friction, and that for normal 
stresses up to 2 kb the shear stress required to cause 
sliding is given approximately by: 

r = 0.850,. 

Byerlee noted that at low stresses there is a wide vari- 
ation in rock friction, and he attributed this to variation 
in surface roughness. 

Zoned joints in the Moab Member are near-planar 
features that display negligible surface relief. For this 
reason a slightly lower coefficient of friction has been 
assumed. Figure 9 is the stress map resulting from use of 
the frictional relation 

Cry z -- 0.6Oyy (at y = 0; Ix] < c) 

as the boundary condition on the joint face. Using this 
relationship, with tr~ = 5 and o~ = - 1, the full boundary 
conditions are given by equations (14)-(16), with S = 
0.12 for the far-field stress state illustrated. The solution 
is obtained from equation (21) with the magnitude and 
orientation of the perturbed principal stresses deter- 
mined from a standard Mohr circle construction. 

The perturbed principal stresses undergo a counter- 
clockwise rotation in orientation. Additionally, at y/c ~- 
0.6, the minimum principal stress, o3, undergoes a sign 
change, switching from a tensile stress for y/c > 0.6 to a 
compressive stress for y/c < 0.6. From y/c = o0 to y/c = 
0.6, the principal stresses undergo a counterclockwise 
rotation of 8 ° . 

I.B. Frictionless joint. If we use the same far-field 
stress as in the previous example, but let the joint be 
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FRICTIONLESS JOmT ~ X,O 

Fig. 10. Map of principal stresses about a frictionless joint under 
far-field stresses of o ~/a~ = - 5; ~ = 30 °. Resolved far-field stresses are 
shown in the upper right. The joint (ylc = 0) is shear stress free (for y 

= 0; ]xl < c, ay~ = 0). Note change in sign of o3 at ylc ..~ 0.6. 

totally lubricated, we obtain the stress map shown in Fig. 
10. The boundary conditions for this problem are given 
by equations (14)-(16) with S = 0. The solution follows 
that of the previous two examples. 

From Fig. 10 we see that a counterclockwise rotation 
of the principal stresses occurs as we approach the 
throughgoing joint. As in the frictional sliding case, the 
minimum principal stress, 03, undergoes a sign change 
from tensile to compressive at y/c ~- 0.6. 

Propagation of  a younger joint. A question of consid- 
erable practical interest is whether we can predict the 
trace of a joint which nucleates far from the through- 
going joint of Figs. 9 or 10 and propagates toward it. 
How might the local perturbation of the stress field, due 
to the presence of the throughgoing joint, affect the 
orientation and propagation of the growing joint? 

A basic tenet of linear elastic fracture mechanics is 
that the magnitude of stresses near a crack tip are 
proportional to the stress intensity factors (Ki, where i = 
I, II, III denotes, respectively, the opening, sliding and 
tearing modes of crack displacement) (Broek 1978, 
pp. 8-17). For a three-dimensional (elliptical) crack, Ki 
is a function of position on the crack front, the crack 
geometry and the loading conditions (Broek 1978, pp. 
80-86). Growth of an individual crack is expected to 
occur when Ki somewhere on the crack front reaches a 
critical value which is a material property; the fracture 
toughness (KC). There is abundant field evidence in 
Arches to support the contention that the zoned joints in 
the Moab Member originally propagated as extensional, 
or Mode I (opening mode) fractures. This in turn indi- 
cates that critical parameters needed to predict crack 
behavior include an evaluation of KI along the crack 
front, and a.measurement of the fracture toughness, KI c, 
of the Moab Member. 

Although extensive compilations of basic solutions of 
stress intensity factors exist for various simple crack 
geometries and loading conditions (e.g. Paris & Sih 

1965, Appendix II), a general solution which considers 
multiple (interacting) non-planar three-dimensional 
cracks of arbitrary shape subjected to generalized load- 
ing conditions is probably not analytically feasible. Num- 
erical solutions for particular configurations may be 
tractable, but their applicability would be clouded by the 
uncertainty of the geometry of the crack front. Even the 
excellent exposures in Arches give little information 
regarding the exact geometry of crack fronts. 

The failure criterion of linear elastic fracture 
mechanics (fracture propagation when KI = K c) is 
simple, elegant and apparently physically sound. How- 
ever, direct application of this simple propagation criter- 
ion to the problem of interest invokes enormous compli- 
cations. 

Intuitively, we might expect the tip of the growing 
crack to cease propagating when it passes from a re#on 
of tensile stress normal to the crack front into a region of 
compressive stress normal to the crack front. In the 
Moab Member, assuming the loading conditions of 
either Figs. 9 or 10, this change of sign in o 3 would occur 
at a distance of about 7 m from the throughgoing joint 
zone. The shortcoming of intuition was convincingly 
demonstrated by Lachenbruch (1961, 1962), who 
showed that a planar crack growing perpendicular to a 
varying stress field can propagate a considerable distance 
into a zone of compressive normal stress. This is possible 
due to the 'lever effect' whereby normal tensile stresses 
near the center of the crack contribute significantly to 
the overall stress intensity (KI) at the crack tip, allowing 
high KI values even though the crack tip proper is subject 
to a normal compressive stress. Thus, although the 
propagating crack of Figs. 9 and 10 will propagate some 
distance into the zone of compressive (73, it is not cur- 
rently possible to predict exactly how far it should grow 
into this compressive zone because of our inability to 
specify a Kl value for the crack front. Nevertheless, 
growth of the second crack (J2) will be retarded within 
the compressive zone. 

For o~ = - 1  and ~ = 30 ° , as o~ increases, the 
magnitude of the retarding compressive stress within the 
compressive zone will increase, and the size of the 
compressive zone itself will increase. Thus, for o~ -> 
Io~l, we might expect the propagating joint (J2 of Fig. 
11) to grow only a small distance into the compressive 
zone. This is clearly in disagreement with the Arches 
observations that in Domain A the later generation 
joints parallel the throughgoing set some tens of cen- 
timeters distant from the throughgoing set (Jx). In spite 
of the assumptions inherent in the stress field solution, 
we can rule out relatively large compressive normal 
stresses across the throughgoing (J1) zones during the J2 
jointing episode. 

For the boundary conditions illustrated in Figs. 9 and 
10, the situation is less clearcut. Although the younger 
joint, J2, will grow some distance into the compressive 
zone, it seems doubtful that the crack will be able to 
extend itself by a length of more than 1.5 c, which would 
be required to duplicate the sigmoidal curving-parallel 
geometry observed in Domain A. 
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Fig. 11. Inferred resultant geometry of a younger joint zone 02) 
growing toward a throughgoing zone (Ji) for the case of Cryy com- 
pressive. A zone will exist around Ji in which 03 becomes compressive. 
Growth of J2 will be retarded as it encounters this zone due to the 
absence of tensile stresses at the crack tip. For a Byerlee-type friction 
law on J~, c 5 switches from tensile to compressive at y/c ~- 0.6. The 
maximum change in orientation of J2 at the compressive zone boundary 

will be about 8 ° from its far-field orientation. 

Two lines of field evidence suggest that Ja zones were 
open cracks or fissures during the J2 jointing episode, 
and thus could not have transmitted normal compressive 
stresses across the J~ zones. They are: (1) a total absence 
of slickensides; and (2) the presence of banded mineral 
staining adjacent to Jl joints. Neither line of evidence is 
conclusive. It is not clear that low compressive normal 
stresses across Jt joints would result in slickenside fea- 
tures, given the small displacements documented on Jl 
joints. Similarly, even if the banded mineral staining 
reflects fluid flow in an open J1 joint, there is no guaran- 
tee that mineralization was synchronous with the J2 
jointing event. 

The lack of slickensides, the banded mineral staining 
and the apparent absence of a 'compressive region' near 
J1 zones, when taken together, suggest that J1 zones 
were effectively free surfaces during the J2 jointing 
episode. In order for J1 joint walls to be physically 
separated, the far-field normal stress applied to the Jl 
joints must have been tensile. 

II. Open crack 

If the resolved normal stress on the joint, (Tyy, is 
tensile, then the joint is open and is a free surface. For 

c¢ c¢ oo a3 = - 1, cr ~ vertical and an angle of 30 ° between o 2 and 
the Z-axis, tTyy will be tensile for the range - l < cr 2 < 3. 
The boundary conditions for this situation are specified 
in equations (7) and (8). An additional distinction can be 
made based on the magnitude of cruz. For the specified 
geometry, cr~ will be compressive if cr~ > 1/3. Over the 
range - 1  < o_~ < 1/3, o ~  will be tensile. Solutions for 
the local stresses are by equations (9)-(12). The principal 
stresses and their orientations are found from standard 
techniques. On the joint surface, we require that the 
principal stresses be perpendicular and parallel to the 
surface. This requires a rotation of the principal stresses, 
which can be accomplished by either a clockwise or 
counterclockwise rotation. The direction of rotation of 
the principal stresses is controlled by the magnitude of 
O ' ~ z .  
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Fig. 12. (a) Map of principal stresses about a joint when the resolved 
far-field stress normal to the joint, ~,y, is tensile. The joint is subject 
to the far-field stresses a~/a~ = - 2 ,  with ~ = 30 °. Since the joint is 
open, ayy = cry~ = 0 on the joint surface. Note that 03 remains tensile for 
all ylc > 0. As ylc --~ 0, the principal stresses rotate such that they 
become parallel and perpendicular to the free surface. (b) Inferred 
resultant geometry of a younger joint zone 02) growing toward a 
throughgoing zone (J0  when the resolved far-field stress normal to Jt 
(a~y) is tensile. Ji will be a free surface. J2 may grow arbitrarily close 

to, and subparallel with J~. Compare with Fig. 2(b). 

II.A. crTz is compressive. If the resolved stress parallel 
to the joint, o~z, is compressive, then the rotation will be 
counterclockwise, as shown in Fig. 12(a). A pertinent 
feature of this solution is that the minimum principal 
stress, 03, remains tensile for all y > 0. 

Ignoring crack interaction, we might expect that a 
joint originating a distance from the throughgoing zone 
and propagating toward it would systematically curve in 
response to the rotation of the minimum principal stress, 
as in Fig. 12(b). In addition, for all y > 0 there is a tensile 
03 available to provide a driving force for crack growth. 
In this manner, it might be possible for a younger joint to 
grow arbitrarily close to a throughgoing zone with the 
younger joint systematically changing its orientation 
until it parallels the throughgoing zone, resulting in a 
curving-parallel geometry. Note that the sigmoidal form 
could be achieved without the younger joint undergoing 
a shear strain anywhere along its length. Thus, a curved 
fracture trace need not be an indicator of a shearing 
mode of crack growth, as suggested by Beach (1980). 

The stress map of Fig. 12(a) and the hypothetical joint 
trace of Fig. 12(b) bear a striking resemblance to the 
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distance at which the curvature would be expected to 
abruptly change is about 2.7 m. This is in excellent 
agreement with the observations in Domain B (compare 
with Fig. 3b). 

The similarities between the curving-perpendicular 
geometries of J~ j o i n t s  and the hypothetical joint trace of 
Fig. 13(b) suggest that J~ grew in a regional stress field in 
which -1/3 < o~/o~ < 1. This assumes that J~ makes a 
far-field dihedral angle of 30 ° with Jal. 

Fig. 13. (a) Map of principal stresses about a joint zone under the 
far-field loading a~/o~ = -0.3;  for ~ = 30°. Since the resolved far-field 
stress normal to the zone (O~y) is tensile, the joint will be an open crack 
and hence a free surface. Additionally, oTz is tensile, causing a 
clockwise rotation of the principal stresses as y ~ 0. a3 will be tensile 
everywhere. Note the abrupt change in orientation of the principal 
stresses at ylc ~ 0.2. (b) Inferred resultant geometry of a younger joint 
zone (J2) growing toward a throughgoing zone (J i) when the resolved 
far-field stresses O'yy and oTz are both tensile. If the propagation path 
of J2 is controlled by the stress field about J], it will abruptly curve into 

J~, at a characteristic distance ofylc -~ 0.2. 

CONCLUSIONS 

Several generations of zoned joints are developed in 
the Moab Member of the Entrada Sandstone in Arches 
National Park, Utah. The sets of zoned joints are paleo- 
stress indicators. Although a joint zone originates in 
response to a tensile driving stress (03 - P < 0), later 
rotation of the far-field principal stresses leads to a 
resolved shear parallel to the plane of the crack. 
Younger joints growing in the rotated stress field may 
display a systematic change in their orientation near an 
older, throughgoing zone. The interactive geometries 
observed are due to local rotation of principal stresses 
near a pre-existing, throughgoing joint zone. Charac- 
teristic interactions between different generations of 
zoned joints may be used to infer the ratio of the far-field 
horizontal principal stresses during an episode of joint 
growth. Different domains of joint interactions charac- 
terize areas in which the the ratio of far-field principal 
horizontal stresses is essentially constant. 
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geometries observed on the younger joint zones in 
Domain A (compare with Fig. 2b). This suggests that the 
systematic geometries noted on J2 A are indicative of 
growth of this joint set in a regional stress field in which 
- 3  < o~1o~  < -1/3. This estimate is strictly valid only 
for those J~ which, far from J~, show a dihedral angle of 
30 ° with J~. 

II .B.  O y y and  O zz are bo th  tensile. If the joint is open, 
but oTz is tensile, then the situation illustrated in Fig. 
13(a) is applicable. A clockwise rotation of the perturbed 
principal stresses will occur. The rotation is most pro- 
nounced closest to the joint, o 3 is everywhere tensile. 

Again ignoring crack interaction, we might expect a 
joint originating far away and growing toward the 
throughgoing zone to curve abruptly into the older zone 
(Fig. 13b). The sudden change in curvature would occur 
at y/c ~ 0.2. For the Moab Member, the characteristic 
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A P P E N D I X  

The approximation of a single zone of joints as a simple, infinitely 
long crack with a characteristic height allows a relatively straight- 
forward analytic solution of the elastic stress fields about the crack. 
Because of the simple geometry and assumptions made about the 
loading, we can obtain a solution to the three-dimensional problem as 
a linear superposition of the solutions to two separate, well-known 
two-dimensional problems from linear elastic fracture mechanics: the 
plane (Mode I loading) and antiplane (Mode III loading) problems. 
The treatment follows the standard methodology, differing only in that 
the entire solution is utilized, not just the crack tip approximation. 

The solutions are based on the complex potential method of Wester- 
gaard (1939), which is treated lucidly in Appendix I of Paris & Sih 
(1965). Limitations of Westergaard's solutions are discussed by Sih 
(1966), Eftis & Liebowitz (1972) and Eftis et al. (1977). 

We assume infinitesimal linear elasticity in an infinite, isotropic 
homogeneous body. Body forces are not considered. The crack 
geometry and co-ordinate system are shown in Fig. 14. One of the 
far-field principal stresses, a~' or o~, is colinear with the X-axis. Based 
on field evidence, we assume throughout that o 7 is vertical and 
colinear with the X-axis. 

Mode I problem 

When the far-field normal stress on the crack face (O~y) is tensile, as 
in Fig. 8, the Mode I (opening mode) solution of linear'elastic fracture 
mechanics is applicable. If a uniform internal pressure within the 
crack, Pi, is considered, then the Mode I solution is applicable if (O~y 
- Pi) < 0. An example of the straightforward application of this 
solution is solving for the stress field around an igneous dike intruding 
into drained rocks. For the plane, two-dimensional crack in the X - Y  
plane subjected to biaxial loading, we must satisfy the equilibrium 
equations: 

i~Ox~ OOA~ 
- - -  + =(} 

ax 8y 

tJO'.t ~ OOvv 
- - +  :" = 0  

8x Oy 

O' tv  = Oy x , (AI) 

while the strain-displacement relations and Hooke's law lead to the 
compatibility equation 

- -  + (a~.~ + Oy>,) = O. ( A 2 )  
Ox ~- . . 

If a uniform internal pressure within the crack, Pi, is considered, 

I 
X 

. o f  

2 e  

Fig. 14. Co-ordinate system used for the full solution of the elastic 
stress field about a plane flat elliptical crack. 
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then the boundary conditions to be satisfied are: 

fory = 0, Ix I < c: ayr = Pi 
o x r = 0  

for (x 2 + y 2 ) l t 2  ._~ oo:  Oyy - -  O'yy 

Oxx = oTx. (A3) 

It is convenient to use the co-ordinate system defined in Fig. 14. The 
general solution to the plane, uniform biaxial loading problem of Fig. 
8(b) can be derived using the methodology of Paris & Sih (1965, 
Appendix I). The full solutions are: 

(r'r2) ~Iylc----~2 sin (](0, + 02))] + O'xx -- (o'er - Pi) 

(A4) 

+ lylc-----~ sin (t(Ot + 02))] + ei 
(rlr2) ~ J 

(A5) 
,.---[- yc 2 ] 

o .  = (,,;, - P ' ) l ~  cos (~(o, + o~)) (A6) 

oL = vtoxx + oyy]. (A7) 

In general, Oxy shearing stresses will increase near the crack tips, 
leading to a local rotation of principal stresses about the Z-axis. If we 
limit our investigation to the plane x = 0, then: 

7t 
Ora ~ - -  

2 

Ot + 02 = : t  

r,, = y 

r] = r 2 = (y2 + c2)V2, (A8) 

and equations (A4)-(A6) become: 

o,~(x = 0) = (o~y - Pi) (y2 + C2)1/2 1 + 

+ OTx - (o~y - Pi) (A9) 

[, , ,(  %(x=O)=(o~y-P~) (y2+c2),~ 1 y2+¢2 + P~' 

(A10) 

and 

trxr(x = O) = 0. (Al l )  

For Oxy = O, there will be no principal stress rotations about the 
Z-axis due to the Mode I part of the solution. 

Mode l l l  problem 

The problem shown in Fig. 8(d) corresponds to the antiplane strain 
(Mode III loading) problem of linear elastic fracture mechanics. In this 
problem, an infinitely long crack with characteristic height 2c is 
subjected to a far-field antiplane pure shear of magnitude (1 - S)o~z, 
where S is defined by equation (17). We require that the crack face be 
traction-free. If u, v, w are displacements in the X, Y and Z directions, 
respectively, then the Mode III problem is specified by: 

u = 0 ;  v = 0 ;  w =  w ( x , y ) .  (A12) 

Since this is a case of pure shear, 

d = d d 0, (AI3) Odx ~ Oyy Ozz ~-" axy  ~- 

where the superscript d refers to Fig. 8(d). 
The equilibrium equations become 

ooL o,,L 
+ = 0, (A14) 

Ox Oy 

while the strain--displacement relations and Hooke's law give 

0(.O _ O'xdz 
Edz - -  

Ox G 

~ _  ao~ _ a~z, ( g l S )  
0y G 

where G is the shear modulus. The boundary conditions for the Mode 
III problem are: 

at y = 0 ,  Ixl < c, o~z = oL = 0, 

at (x 2 + yZ),n ~ oo; a~z = (1 - S)a~z. (A16) 

Using the co-ordinate system defined in Fig. 14, the solution is given 
by Eshelby (1968, equation 20) as: 

[ ® r ( 01+02.)]  (A17) 
o~z = (1 - S)  oy z (rtr2)V2 cos 0 2 

o ~ =  (1-S)[o~zr'---'['~sin(O(r,r2) m 01 + 02 ) ]2  . (A18) 

O n  the plane x = 0, using the relations of (A8), we find that 

[ - , ]  o~z(x = O) = (1 - S) oy~ (y2 +-c2)trz ' (A19) 

o~,(x = O) = O. (A20) 

Non-zero oyz and oxz shearing stresses will cause rotation of the 
principal stresses about the X- and Y-axes, respectively. On the plane 
x = 0, the only non-zero shear stress is oyz. This will lead to a rotation 
of the principal stress axes about the X-axis. 


